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A time-accurate, coupled solution procedure is described for the 
chemical nonequilibrium Navier-Stokes equations over a wide range of 
Mach numbers. This method employs the strong conservation form of 
the governing equations, but uses primitive variables (p,, u, v, h, Vi) 
as unknowns. Real gas properties and nonequilibrium chemistry are 
considered. Numerical tests include steady convergent-divergent 
nozzle flows with air dissociation/recombination chemistry, dump 
combustor flows with n-pentaneair chemistry, and nonreacting 
unsteady driven cavity flows. Numerical results for both the steady 
and unsteady flows demonstrate the efficiency and robustness of the 
present algorithm for Mach numbers ranging from the incompressible 
limit to SuperSOniC speeds. 0 1993 Academic PWSS, Inc. 

1. INTRODUCTION 

The computation of the flow involving wide variations in 
Mach number often poses problems for contemporary com- 
pressible flow algorithms. Chemically reacting flow in an 
aeropropulsion system is a typical example of such cases. 
The characteristic trait of this flow is that the fluid velocity 
in a large portion of the computational domain is much 
smaller than the acoustic speed, and yet the density varia- 
tion is significant or the flow velocity in other parts of the 
domain may be large so as to preclude an incompressible 
approach. Other examples of such flows of interest 
include large embedded recirculation zones in an otherwise 
high-speed flow, flow in a large contraction ratio con- 
vergentdivergent nozzle, and rocket motor flow in which 
the Mach number is zero at the closed end of the chamber 
and supersonic at the nozzle exit. The difficulties are 
primarily in the computation of the low speed regions of the 
flow [1-5-J. 

Numerical algorithms developed for compressible flows 
are often ineffective at low Mach numbers. There are two 
well-recognized reasons [l-5] for this difficulty. First, the 
system’s eigenvalues become stiff at low flow velocities. 
In theory, this can be circumvented by using a large CFL 
number in implicit schemes. In practice, however, a large 
approximate factorization error in multidimensions intro- 
duces the optimum CFL number beyond which con- 
vergence slows down. At low Mach numbers, there are large 
disparities among CFL numbers based on each eigenvalue 
and the numbers cannot become the same optimum number 
simultaneously. Second, the pressure term in the momen- 
tum equations becomes singular as the Mach number 
approaches zero, yielding a large roundoff error. This 
behavior smears the pressure variation field and often 
produces inaccurate solutions. 

In many important physical problems (e.g., thermally 
driven flow, laminar diffusion flame, liquid droplet 
vaporization), Mach numbers as low as lo-’ are of interest. 
To solve Rows in this Mach number range, perturbation 
expansion techniques have been developed by Merkle and 
Choi [4], Oran and Boris [6], and Guerra and Gustafsson 
[7]. The method is based on the expansion of Row variables 
in a small parameter proportional to Mach number squared 
[4,6] or Mach number [7]. The result is an approximate 
set of equations valid only at low Mach numbers, but which 
has well-conditioned pressure gradient terms in the momen- 
tum equations as well as a set of well-conditioned eigen- 
values. Rapid and uniform convergence rates for Mach 
numbers from 10-l to lop5 were observed in [4]. The 
major deficiency of this approach is that it is not valid at 
moderate and high speeds. 

Recently, Patnaik et al. [8] extended the flux-correct 
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transport (FCT) scheme discussed in [6] to low Mach 
number flows using a predictor-corrector procedure. In 
[S], an implicit correction step for solving one elliptic 
pressure correction equation was added to the baseline 
explicit FCT method (predictor). The resulting scheme was 
applied to nonreacting flows for Mach numbers as low as 
0.03 with good computational efficiency. Ramshaw et al. 
[9] reported a pressure gradient scaling (PGS) method for 
low Mach number flow with nearly uniform spatial pressure 
field. The PGS method suffers from the same deficiency as 
the perturbation method, i.e., it is not valid at moderate and 
high Mach numbers. 

There are many physical problems in which the bulk flow 
velocity varies from near zero to supersonic, and therefore 
it would be necessary to use a numerical algorithm which is 
effective for a wide range of Mach numbers. In this regard, 
preconditioning methods [l-3] have received consid&able 
attention and demonstrated their effectiveness for certain 
classes of flow problems. The preconditioning approach 
involves premultiplying the time derivative terms in the 
governing equations by a matrix designed to rescale the 
system’s eigenvalues. Earlier studies Cl, 21 showed that, 
with preconditioning, identical rates of convergence could 
be obtained for Mach numbers from 0.05 to 0.7. However, 
this approach is not adequate below Mach number 0.01, 
since control of roundoff error was not considered. 
Moreover, the above results were limited to inviscid flows. 

Recently, Choi and Merkle [ 51 reported a new precondi- 
tioning procedure for ideal gas flows at all speeds for both 
inviscid and viscous cases. Their method has well-condi- 
tioned eigenvalues and pressure gradient terms for all Mach 
numbers and Reynolds numbers and therefore represents a 
very promising approach in the pursuit of an all speed algo- 
rithm. In addition, Chen and Pletcher [lo] developed a 
strongly implicit procedure intended for flows with a wide 
Mach number range. Results in [lo] showed that the 
method yielded fast convergence for Mach numbers from 
0.05 to transonic. Since the set of governing equations still 
has ill-conditioned eigenvalues as well as the pressure 
singularity problem, the procedure in [lo] might become 
less effective for Mach numbers below 0.01. 

Chemically reacting flows exhibit another category of 
numerical difficulties because of the wide range of time 
scales involved in their calculation. To avoid this stiffness 
problem, chemical source terms are usually treated 
implicitly. This measure is equivalent to preconditioning the 
time derivative terms of the species conservation equations 
so that all chemical and convective processes proceed at 
approximately the same numerical rate. Although a number 
of reacting flow algorithms for high-speed flows have been 
developed in the past few years [ 1 l-131, chemical reactions 
have not been considered in most of the low-speed com- 
pressible flow algorithms, with a notable exception of [ 141. 
In Ref. [ 141, a semi-implicit predictor-corrector procedure 

was used to solve the chemical nonequilibrium flow equa- 
tions at low speed. Similar to the SIMPLE algorithm, the 
discretized equations were solved in a decoupled, sequential 
manner. Hosangadi et al. [ 1 S] recently reported a study in 
which the method in [4] was extended to consider combus- 
tion in low Mach number flows. However, because of the 
adoption of the flame sheet model (infinite reaction rate) 
and the simplifying assumptions used in the treatment of 
thermodynamic and transport properties, their method is 
not generally applicable to most combustion problems. 

The objective of this study is to develop a unified solution 
algorithm for calculating chemical nonequilibrium flows 
at all Mach numbers, ranging from molecular diffusion 
velocity to supersonic speeds. Finite-rate chemistry and 
real-gas thermophysical properties are considered in the 
analysis. The approach we adopted here is an extension 
and refinement of the method in [S] for nonreacting ideal 
gas flows. Numerical test cases considered include 
convergent-divergent nozzle flows with air dissociation/ 
recombination chemistry, dump combustor flows with a 
hydrocarbon fuel (n-pentanebair reaction chemistry, and 
nonreacting unsteady driven cavity flows. 

2. MATHEMATICAL FORMULATION 

2.1. Governing Equations 

The unsteady compressible Navier-Stokes and species 
transport equations for a chemically reacting gas of N 
species written in general curvilinear coordinates can be 
expressed as 

where the vectors 0, e, P, e,, %,, and fi are defined as 

R=;H. 

In the above expressions, t, 5, and q are the time and spatial 
coordinates in generalized coordinates and t, and qr are the 
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grid speed terms. The r,, <,,, qx, and qy are the metric terms 
and the J is the transformation Jacobian. The power, 6, is an 
index for two types of governing equations with 6 = 0 for 
two-dimensional and 6 = 1 for axisymmetric cases (with x 
being the axial and y the radial coordinates, respectively). 
The vectors Q, E, F, E,, and F, in the above definitions are 

Q = (P, PU, PO, PEP P Y, , .-., P Y, - I JT, 

E=(P~, pu2+p, PW (PE+P)w PuY,, ..-> PC,-,)~, 

F=(~~,puu,pu~+p, (pE+ph p~G...,pC,q)~, 

E, = (O>-L,, zx,o UT,, + uzxy + qx,, 4x,> ...) qxdT 

F, = (0, 7xy> ryy, urxy + utyy + qy,, qy,’ ..a, qyN-JT, 

and the source term vector H is 

where, p, p, u, and u represent the density, pressure, and 
Cartesian velocity components; E = e + $(u’ + u2) is the 
total internal energy with e being the thermal internal 
energy; Yi is the mass fraction of species i; and Si is the rate 
of change of species i due to chemical reactions. The normal 
and shear stresses, and energy and species diffusion fluxes 
are given by 

au au z xx =2p$;p -+- ) 
( > ax ay 

au au T xy = p s+ax ' ( > 

qvi = pD, 3, 
ay 

where T, p, and k are the temperature, viscosity, and ther- 
mal conductivity, respectively; D, = ( 1 - Xi)E$ i Xi/D, is 
the effective binary diffusivity of species i in the gas mixture, 
Xi the molar fraction of species i, and D, the binary mass 
diffusivity between species i andj. 

With the conventional compressible flow numerical 
algorithms the temperature and pressure are calculated 
iteratively from the equations [ 11, 161 

e= 5 Yihi-E, 
i=l P 

hi=h;“,+f’ CpidTy 
Trcf 

N v (2) 
p=pR,T 1 ‘i, 

is1 wi 

where R, and T,,, are the universal gas constant and 
reference temperature for thermodynamic properties, and 
Wi, Cpi, hi, h; are the molecular weight, constant pressure 
specific heat, thermodynamic enthalpy, and heat of 
formation of species i, respectively. 

In reacting flow calculations, the evaluation of thermo- 
physical properties is of vital importance. In this paper, the 
values of C,,, k, and ,D for each species are determined by 
fourth-order polynominals of temperature, as described in 
[16]. The specific heat of the gas mixture is obtained by 
mass concentration weighting of individual species. The 
thermal conductivity and viscosity of the mixture, however, 
are calculated using Wilke’s mixing rule [17]. The binary 
mass diffusivity D, between species i andj is obtained using 
the Chapman-Enskog theory [ 173. 

Two different nonequilibrium chemistry models are used 
in the present work. For the convergent-divergent nozzle 
flow, an air dissociation/recombination chemistry model 
with five species (O,, N2, 0, N, NO) and eleven elementary 
reaction steps [ 181 is adopted. For the dump combustor 
flow, an n-pentane-air chemistry model with five species 
(C5Hi2, 02, N2, CO,, H,O) and one global reaction step 
[ 19) is used. 

2.2. All-Mach-Number Formulation 

As noted earlier in the Introduction, the two main dif- 
ficulties that render the compressible flow algorithms inef- 
fective at low Mach numbers are the roundoff error caused 
by the singular pressure gradient term in the momentum 
equations (the pressure term is of order l/M2 while the 
convective term is of order unity in the nondimensional 
momentum equations) and the stiffness caused by the wide 
disparities in eigenvalues. To circumvent the pressure 
singularity problem, we first note that it is the pressure 
gradient, not the actual pressure, that is involved in the 
momentum balance. Therefore, the pressure may be decom- 
posed into a constant reference pressure part and a gauge 
pressure part as follows: 

P(X9 Yv t) = PO + P&s Y, t). (3) 
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To maximize the benefit of this measure, p,, should be taken 
to comprise the majority ofp. Physically, the gauge pressure 
pg amounts to the dynamic pressure responsible for the 
velocity-pressure coupling in the momentum equation and 
is that part of pressure that drives the flow. With this 
representation of pressure, and noting that V(p, + p,) = 
Vpg, the static pressure p in the momentum equation is 
replaced using the gauge pressure pg. With proper selection 
of p. (usually the freestream pressure or the upstream 
pressure), the magnitude of the pressure gradient term in 
the nondimensional momentum equations becomes of order 
unity as the Mach number approaches zero, and therefore 
the singularity is removed from the system. 

In conventional compressible flow algorithms, pressure is 
not one of the dependent variables but it is calculated from 
the dependent variables and the equation of state. This is 
not a preferable approach at low Mach numbers, because 
roundoff errors are introduced in p and pg, nullifying the 
pressure decomposition measure. To avoid contamination 
of the pressure field by the roundoff error, it is necessary to 
solve for pg directly, i.e., to let pg be one of the dependent 
variables. Following the approach by several- researchers 
L-5, 20, 213 in compressible flows and low Mach number 
flows, we add pseudo-time terms, composed of a set of 
primitive variables (p,, U, v, h, Y,), to the governing equa- 
tions. The resulting Navier-Stokes equations are given in 
the nonconservative form (for simplicity, only 2D equations 
are presented) 

where z is the pseudo time, h is the specific thermal enthalpy, 
and H = h + f (u’ + v’) is the total enthalpy of the gas 
mixture. Note that momentum, energy, and species equa- 
tions keep their standard form, while only the continuity 
equation is modified by introducing the artificial com- 
pressibility method [21]. /I in the continuity equation is a 
parameter for resealing the eigenvalues of the new system 
of equations (to be discussed later). When steady state 
solutions are of interest, physical time terms can be dropped 
and only pseudo-time terms are retained. 

In order to have better conservation properties and the 
ability to capture shock waves, we return to the conser- 
vative form by adding the continuity equation to the 
momentum, energy, and species equations in Eq. (4). The 
resulting Navier-Stokes equations in a conservative form in 
curvilinear coordinates are 

where the primitive variable vector 0 and the precondi- 
tioning matrix F are given as 

I ap ap --E+ ap au ap au 
B ar dt+” z+p Tg+“g+Pay=o, (44 

Pg+P $+pZ au ap, 
an+pv~+Z 

a7 a7 =22+22 
ax ay ’ 

au au au a” ap, P~+P~+Pu~+P”-$- ay 

(46) 

I-= 

ah ap, a0 aH aH 
P-8;-x+P” &+pv- ar+Pat+P” 

aH ap --- 
Z+Pv ay at 

= ah,, + utxy + 4+) + ah, + uzyy + qy,) 
ax ay ’ (ad) 

ayi ayi ari ar, 
Pdt+Pat+PUdx+P”ay 

pk. 
U 

V 

Q=; y” 

!I 
, 

y: 

Y,_I 

l/B 0 0 0 ooe.0 
u/B p 0 0 00. -0 
“lB 0 p 0 00. *o 

H//?-l pupv p 00 . . 0 
Y,/fi 0 0 0 po. .o 
Y*/fl 0 0 0 0 p 0 . 0 

. . . -0. .o 
. . . .o.o 

YN-,/jl 0 0 * * . . 0 p 

The definitions of vectors 6, e, P, e,, P,, and A in Eq. (5) 
are identical to those in Eq. (1) except that the absolute 
pressure in the momentum equations is replaced by the 
gauge pressure pg. 

The eigenvalues (in the <-direction) in the pseudo-time 
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can be obtained from the matrix I-‘A, where A is the 
Jacobian aE/:/aQ. The eigenvalues for a real gas are 

kU,U,$J(l+~) 

,,/m].UJJ ,..., (6) 

where c is the speed of sound, a, = t,, a, = t,,, and U is the 
contravariant velocity component defined as U = a1 u + azu. 
To obtain well-conditioned eigenvalues the scaling factor /I 
is taken to be 

p = u2 + 02; 

then all the eigenvalues will have the same order of 
magnitude. 

For convenience of presentation, the numerical scheme 
based on Eq. (5) will hereafter be referred to as the pressure- 
based scheme, while the schemes based on the standard 
form of equations (Eq. (1)) will be referred to as the density- 
based schemes. 

3. NUMERICAL METHOD 

3.1. Dual Time-Stepping Integration Procedure 

To obtain time-accurate solutions for time-evolving 
problems, a dual time-stepping integration method is 
chosen. An implicit iterative procedure is used for 
asymptotic time-marching in pseudo-time. The solution 
converged in pseudo-time corresponds to a time-accurate 
solution in physical time. A similar technique has been used 
by Hosangadi et al. [15] and Rai [20]. One advantage 
of the dual time-stepping method is that the convergence 
of the iterative process is determined by the eigenvalue 
characteristics on the pseudo-time space and not by the 
original stiff eigenvalues. 

A general dual-time marching procedure can be devised 
for Eq. (5) by using a three-level backward differencing for 
physical time, an Euler implicit differencing for pseudo- 
time, and a central differencing for space. The specific 
spatial difference method used in the present work may 
not be optimal for all cases (e.g., an upwind stencil may 
work better for high-speed flows), but it serves to illustrate 
the idea of the overall approach. The equation for the 
(p + 1)th iteration in the pseudo-time at the (n + 1)th level 
in physical time can be represented as 

$P+qP+ al?P+1+a2Qn+a3tp 

AZ At 

The coefficients a,, a2, and a3 depend on the physical-time 
step and the level of temporal accuracy desired in physical 
time. In the case where the time step is constant and second- 
order accuracy is required, a,, a*, and a3 can be chosen as 

3 
al = 3, a, = -2, a3 = f. 

It is noted that a higher order time accuracy can be easily 
obtained with negligible increase in computational time by 
using more time levels in the physical-time term in Eq. (7). 

The dual-time marching method allows flexibility in 
selection of the time step sizes in the two time spaces. The 
physical-time step size At is determined based on the 
characteristic evolution of the unsteady flow under con- 
sideration. The pseudo-time step size AZ is, on the other 
hand, determined based on the numerical stability of the 
algorithm and can be adjusted to give the optimum con- 
vergence rate for the pseudo-time iteration procedure. In the 
case that the steady-state solution is of interest, the physical- 
time term in Eq. (7) is eliminated. For test cases considered 
in the present work, pseudo-time CFL numbers between 5 
to 10 are used in most calculations. 

The terms at the (p + 1)th time level in Eq. (7) need to be 
linearized for the construction of an implicit time marching 
scheme. The inviscid Jacobians used in the linearization are 
defined as 

The explicit expressions for T, A, and B are given in 
the Appendix. Following [S], with the definition of the 
differential operator 

_ ali-, aF, 
L(Q)=w+ds, 

the viscous terms can be linearized as 

L,(@P+’ = L,(Q)P + $ R,, A+2 R a ag ay coafj 

(8) 

(9) 

The viscous Jacobian matrices R,,, R,,, R,,, and R,, can 
be obtained following a similar procedure as for the inviscid 
Jacobians. 

3.2. Chemical Source Term and Source Jacobian 

For a set of N, elementary reactions involving N species, 
the reaction equations can be written in the general form 

i= 1, 2, . . . . N,, (10) 
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where vb and vg are the stoichiometric coefficients for 
species j appearing as a reactant in the ith forward and 
backward reactions, respectively, and nj is the molar con- 
centration for species j (nj = p Yi/ Wj). Also, k, and kbi are 
the forward and backward reaction rate constants for the 
ith reaction step, respectively. The reaction rate constant ki 
(k, or kbi) is given by the Arrhenius expression 

k.-A.T”te-EiIRuT 
I- I 9 (11) 

where Ei represents the activation energy, and Ai and m, are 
constants. 

From Eq. ( 1 1 ), the rate of change of mass concentration 
of species j is obtained by summing up the changes due to 
all reaction steps, 

It is noted that, because of the vastly different time scales 
that may be involved in the elementary reactions and the 
flow, and the strong dependence of the source terms on tem- 
perature (exponentially) and density (p2 or p3, depending 
on the order of reaction), the set of equations may become 
very stiff for most flow conditions of interest. To mitigate 
this problem, chemical source terms are treated implicitly in 
the present work to improve numerical stability. Because of 
this implicit treatment, the attainable CFL numbers 
(CFL = 5 to 10) for the present reacting flow computations 
are comparable to those typical in nonreacting flows using 
implicit methods. As demonstrated in the nozzle flow 
calculations (see Numerical Test section), the same numeri- 
cal efficiency is retained even when a large portion of the 
flow field is near chemical equilibrium where the chemistry 
is extremely stiff. Calculations using explicit chemistry 
(other terms in the governing equations were still treated 
implicitly) are also carried out for some of the test flows 
to examine the sensitivity of the reacting flow computation 
to the chemistry treatment. It is found that reduction of 
the CFL number by about three orders of magnitude is 
generally needed for numerical stability. The expression 
for chemistry source term Jacobian is provided in the 
Appendix; more details for the construction of the Jacobian 
can be found in [ 16). 

3.3. Discretized Equations 

After linearization, Eq. (7) can be expressed in the form 

where 

RP=al~p+a2~n+a3~“-1+a(,-e,)p 

At at 

where D = afi/aa is the source term Jacobian. Central dif- 
ferences are used to discretize the spatial derivative terms in 
Eqs. (13) and (14) for both explicit and implicit operators. 
Note that in the implicit operator the cross-derivative 
viscous Jacobians are neglected. The resulting coupled 
algebraic equations are solved using a modified strongly 
implicit procedure (MSIP) originally proposed by 
Schneider and Zedan [22]. When Eq. (13) converges in the 
pseudo-time space at the (n + 1 )th physical time level, we 
obtain @‘+ i = a(@‘+ ‘) and the right-hand side of Eq. (14) 
provides the time accurate solution. As noted earlier, the 
physical-time terms are neglected for steady flow problems. 

The MSIP method converts the left-hand side operator to 
two, one upper and one lower, triangular operator matrices 
and inverts them in sequence [22]. By sweeping in the 
diagonal directions, i.e., the direction that i + 2j increases or 
decreases, the inversion of the two implicit operators can be 
fully vectorized, avoiding the recursive procedure occuring 
in the tridiagonal system incurred by the popular AD1 pro- 
cedure. Since the size of the blocks in implicit operators 
becomes large as a large number of species equations is 
included in reacting flows, the inversion of the implicit 
operators can be prohibitively expensive without vectoriza- 
tion. 

A frequently used “frozen operator” technique may also 
be adopted to reduce the computational cost of performing 
sub-iterations in unsteady flow calculations. In this, the 
implicit (left-hand side) operator is frozen after the first 
iteration in the pseudo-time. For subsequent iterations, 
only the explicit (right-hand side) operator needs to be 
recalculated and the solution is obtained by a simple 
backward and forward substitution of the saved, inverted 
implicit operator. This “frozen operator” strategy is not 
used in the present work. 

The running time of the present calculations, including 
integrating eight equations, calculating chemical source 
terms and thermophysical properties, is about 140 pss/grid 
point/time step on a CRAY-YMP computer, using the cft77 
version 5 compiler. 

4. NUMERICAL TEST 

Numerical examples are selected to test the various 
features of the present algorithm, i.e., the ability to handle 
wide variations in Mach number, chemical reactions, and 

581/106/2-8 



312 SHUEN, CHEN, AND CHOI 

unsteady flow. Only laminar flows are considered. Bound- 
ary conditions are treated implicitly for all the cases 
considered. Method of characteristics based boundary 
conditions [5] are used at inflow and ouflow boundaries. 
The no-slip, non-catalytic conditions, adiabatic or constant 
temperature, and a normal pressure gradient condition 
obtained from the normal momentum equation are 
specified at the walls. The symmetry conditions are applied 
at the centerline. 

4.1. Convergent-Divergent Nozzle Flow 

The model problem concerns the flow through a con- 
vergent-divergent nozzle. Two nozzle geometries are 
considered for contraction area ratios (AR) of 50 and 1000 
and inflow Mach numbers around 0.011 and 0.0006, respec- 
tively. The AR = 50 case considers a two-dimensional 

a 

b 

FIG. 1. Mach number contours for the convergent-divergent nozzle 
flows: (a) the 2D nozzle (AR=50); (b) the axisymmetric nozzle 

nozzle, while the AR = 1000 case, an axisymmetric 
geometry. The Reynolds number based on the conditions 
at the throat is 2 x lo6 for AR = 50 case and 3 x lo6 for 
AR = 1000 case. The air upstream of the nozzle entrance is 
assumed to be in chemical equilibrium, with temperature at 
5000 K and pressure 10 atm. As the dissociated air flows 
through the nozzle, recombination reactions take place 
due to the reduction in temperature. An air dissociation/ 
recombination chemistry model with five species (O,, N,, 
0, N, NO) and eleven elementary reaction steps [18] is 
adopted. 

The Mach number contours are plotted in Fig. 1 for the 
two cases. A 80 x 33 grid for AR = 50 and 150 x 38 grid for 
AR = 1000 are used with clustering near the wall. Figure 2 
presents the Mach number, static pressure, temperature, 
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FIG. 2. Distribution of flow properties along the centerline of the 2D 
nozzle. 
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and species molar fractions along the nozzle centerline for 
the 2D nozzle (AR = 50). To illustrate the effects of non- 
equilibrium chemistry, results with frozen chemistry model 
are also presented for comparison. Because of the high tem- 
perature and pressure in the bulk of the subsonic section of 
the nozzle, chemical reactions are very close to equilibrium 
and the species molar fractions do not change significantly 
from their inflow values until close to the nozzle throat, 
where temperature and pressure undergo rapid changes 
caused by flow acceleration. Near the exit of the nozzle, 
chemical reactions become essentially frozen due to the 
relatively low temperature and pressure. 

a 
I 

1 o-3 

104 

i5 10-5 

.i 10-9 

a" 10-7 

B 

E 
10-9 

p 10-9 

': 10-10 
2 

10-l' 

1 o-12 

10-13 

The convergence histories of the two nozzle calculations 
are shown in Fig. 3 (results from the present method are 
labeled as pressure-based scheme). For comparison, results 
obtained using a density-based scheme are also presented. 
As expected, the convergence of the present scheme is very 
fast for both nozzle geometries although the inflow Mach 
numbers are quite low for the two cases. In contrast, the 
density-based scheme shows slow convergence in the 
AR = 50 case and very poor convergence in the AR = 1000 
case. 

As noted earlier, the chemistry becomes very stiff as 
chemical equilibrium is approached. However, because of 
the effectiveness of the implicit chemistry treatment, no 
difficulty was encountered in the present nozzle calculation 
despite a large portion of the flow being at or near chemical 
equilibrium. 

4.2. Dump Combustor Flow 

Two types of two-dimensional dump combustors, one 
symmetric and one asymmetric, are considered to study the 
capability of the present method for recirculating flows. The 
expansion ratios are 3.0 and 1.94 for the symmetric and 
asymmetric cases, respectively. Fully developed flow is 
assumed at the inlet plane for both cases. The computa- 
tional domain starts at a distance upstream of the step and 
is extended far enough downstream for flow redevelopment. 
For the symmetric case, the inlet plane is located at 
x/s = - 3 and the exit plane at x/s = 12. For the asymmetric 
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case, the inlet and exit locations are at x/s = -4 and 
x/s = 40, respectively. Here s denotes the step height and x 
the streamwise distance. 

For the symmetric case, only half of the domain is 
considered in the computation due to symmetry. The inlet 
Reynolds number based on the inlet bulk velocity and the 
step height is 37.3. A 51 x 29 grid is used with grid clustering 
near the wall and the step. A cold flow without combustion 
is studied for this configuration with a constant inlet and 
wall temperature of 300 K. Several inlet Mach numbers, 
ranging from lo-’ to 0.05, are considered to study the 
convergence properties for this flow. Also, the effect of using 
both absolute and gauge pressures on the convergence 
characteristics is examined. The convergence history is 
presented in Fig. 4. It shows that the convergence patterns 
are identical for the three Mach numbers, lo-‘, 10p4, and 
0.05, when the gauge pressure pg is used as the dependent 
variable. However, if the absolute pressure p is chosen as the 
dependent variable, the convergence deteriorates as the inlet 
Mach number decreases. It fails to converge at all for the 
case with the inlet Mach number of lo-‘. The particle traces 
of the converged solution are also shown in the insert in 
Fig. 4. It clearly shows the presence of flow recirculation and 
reattachment behind the expansion step. For the present 
prediction, the recirculation length (x,/s) is about 4.08, 
which is in good agreement with the result by TenPas and 
Pletcher (XJS = 4.048) [23]. 

Both non-reacting and reacting flows are considered for 
the asymmetric case. An n-pentane-air chemistry model 
with five species (CSHi2, 02, N,, CO*, H,O) and one 
global reaction step [ 193 is used. For the reacting flow, the 
fuel is pre-mixed before it enters the combustor. The inlet 
temperature is 300 K and the wall is assumed adiabatic. An 
ignition source is placed near the eye of the corner recircula- 

tion zone to initiate the combustion. Two Reynolds num- 
bers (based on the hydraulic diameter of the inlet (small) 
channel and the bulk velocity), 389 and 1000, are con- 
sidered for this geometry. The inlet Mach number for this 
flow is 0.004. A 81 x 31 grid is used for both Reynolds num- 
bers. Figure 5 shows velocity vectors and particle traces for 
both non-reacting and reacting flows at Re = 1000. It is 
interesting to note that for the nonreacting flow case a 
second recirculation zone exists at the bottom wall across 
the main corner recirculation zone, consistent with the 
experimental observation by Armaly et al. [24]. The corner 
recirculation zone in the reacting flow is much’diminished 
due to the gas expansion caused by combustion, and the 
second recirculation zone disappears in this case. 

Figure 6 shows velocity profiles for the nonreacting flow 
case at some selected streamwise stations downstream of the 
step for both Reynolds numbers. The u,,, in the figure is the 
maximum velocity at the inlet plane. The present numerical 
predictions agree very well with the experimental data in 
[24] for the Re = 389 case. However, some discrepancies 
exist for the Re = 1000 case, which may be attributed to the 
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presence of the second recirculation zone discussed earlier. 
Armaly et al. [24] reported that this second recirculation 
zone began to destroy the two dimensionality of the flow for 
Reynolds number above the value of 400 for thir test condi- 
tions. Figure 7 shows the temperature and combustion 
product mass fraction distributions at some selected stream- 
wise stations for the reacting flow case. The discontinuities 
in the distributions mark the locations of the flame surface. 

4.3. Unsteady Driven Cavity Flow 

Two types of unsteady flow in a square cavity are 
considered here to study the unsteady capabilities of the 
present method. The first case considers the flow with an 
impulsively started lid. A 51 x 51 stretched grid is used. The 
Reynolds number based on the lid velocity and the length 
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FIG. 10. Time history of drag coefficient on the oscillating lid, 
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FIG. 8. Time history of streamfunction contours with impulsively 

started lid, Re = 400. 
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of the cavity is 400 and the Mach number is lo-‘. During 
the first few physical time steps, about 150 iterations are 
required to converge to a level of 5 x lo-’ (the initial 
residual is about 5 x 10-r). As the solution develops in time, 
the number of iterations decreases rapidly and becomes one 
as the steady-state solution is approached. 

Figure 8 shows streamlines at several non-dimensional 
time steps. The flows reaches steady state at around T = 36. 
The solution is verified by comparing the drag coefficient on 
the lid with that of Soh and Goodrich [25] and u and v 
velocity profiles at steady state with Ghio et al. [26]. Good 
agreement is observed in both cases, but this comparison is 
not presented here for reason of space. 

The second case considers oscillatory flow in the cavity. 
The lid is subject to an oscillatory motion as described by 
u = u,, cos(ol). The grid used and the Reynolds number 
(based on the maximum lid velocity) are identical to the 
impulsively started case. Forty time steps were used for each 
periodic cycle. The time integration is carried on until a 
periodic motion is observed in the flow. For the present 
case, it takes about 35 iterations at each physical time step 
to converge the residual to a level of 5 x lo-‘. About eight 
cycles are required to reach a periodic state in the flow. 

Some selected streamfunction contours during the first 
half cycle at a periodic state are shown in Fig. 9. The results 
at the second half cycle are the mirror image of those at the 
first half cycle. The time history of the drag coefficient on the 
lid is again compared with that of Soh and Goodrich [25] 
in Fig. 10 and the agreement is very favorable. 

CONCLUDING REMARKS 

A time-accurate, coupled implicit procedure has been 
developed for solving the unsteady chemical non- 
equilibrium Navier-Stokes equations over a wide range of 
Mach numbers. The approach employs the strong conser- 
vative form of governing equations but uses primitive 
variables as primary dependent variables. This method has 
well-conditioned eigenvalues and pressure gradient terms at 
all Mach numbers and appears to be effective for the test 
cases considered, with Mach numbers ranging from lo-’ to 
about 4.2. Work for further algorithm validation and the 
implementation of a turbulence model is still needed and is 
being planned. 

APPENDIX 

The number of species equations is assumed to be five (IV = 5) in the Jacobian matrices given below, 

T= 

1 P 
RT 

0 0 -- 
CPT 

PQR, PQ2 PO3 PO4 

24 
RT ’ 

0 PU -- 
CPT 

PUQ, Pa PUG PUS24 

V PV 
RT 

op -- 
CPT 

PVQ, PUG PVQ, PUQ, 

FT-l pu pv p PHQ, PHQ, PHQ, PHQ, 

Yl PYI 
RT 

00 -- 

CPT 
P@, PYlG PYlG PYlQ4 

y2 PY2 

RT 
0 0 -- 

CPT 
PY2fil P@2 Py2B3 PyZs24 

Y3 PY3 

RT 
0 0 -- 

CPT 
Py3Q, Py3Q2 P@3 PY3Q4 

Y4 PY4 

RT 
0 0 -- 

CPT 
Py4Q1 Py41n2 Py41R3 P@4 

(A.11 
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and W is the molecular weight of the gas mixture; 

A= 

where 

and 

u 
Pal 

PU 
iiT Pa2 -- 

CPT 
PUG, PUQ2 Pun3 PUQ, 

UU 
%+RT p(U+uG 

PUU pua, -- 
CPT 

PUUQ, PUUQ, PUUQ, PUUQ‘I 

vu 
a2+FT pva, 

PVU p(U+va,) -- 
CPT 

PVUQl PVUQ2 PVUQ, PVUQ, 

Uff 
RT P(fb + 4 PWcl2 + vv2 PW PUHQ, pUHs2, pUHs2, pUHQ, 

uy, 
RT pYlal 

PUY, 
PYla2 -- 
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PU@l PUYlQ2 PUY,Q, PUY,Q4 

uy2 
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PUY2 
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PY3al pY3a2 

pGY, 
-5 PUYG, PUY42 PU@, PUY,Q, 
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RT P&al da2 
Pk 

-CT PUY‘&l PUY4Q2 PUY,Q, PU@, 
P 

U=alu+a2v, a1 =L, a2=ry, 

)=l-$T. 
P 

The Jacobian matrix B is obtained by letting aI = qX, a2 = qY. 
The chemical source term Jacobian has the general form 

' as, 

'ap, 
as2 
ap, 

as, 
au 
as2 
au 

as, as, as, as, as, as, ------ 
av ah ay, ay, ay, ay, 
as, as2 as2 as2 as2 as2 ------ 
av ah ay, ar, aY3 ay, 

as3 as, as3 as3 as, as3 as, as3 

apg 
------ 

Z av ah ay, ar, aY3 ay, 
as4 as4 as4 as4 as4 as4 as4 as4 
ap, 

------ 
3i av ah ay, ar, ay3 ar, 

,  

9 

I  

3 (A.21 

(A.31 
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asi- 1 as. --I 
@, RTap 

and 
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